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Scattering-theory analysis of waveguide-resonator coupling

Yong Xu, Yi Li, Reginald K. Lee, and Amnon Yariv
Department of Applied Physics, California Institute of Technology, MS 128-95, Pasadena, California 91125

~Received 14 May 2000!

Using a formalism similar to the quantum scattering theory, we analyze the problem of coupling between
optical waveguides and highQ resonators. We give the optical transmission and reflection coefficients as
functions of the waveguide-resonator coupling, cavity loss~gain!, and cavity resonant frequency. Based on
these results, the recently proposed concept of ‘‘critical coupling’’ is discussed. Using a matrix formalism
based on the scattering analysis, we find the dispersion relation of indirectly coupled resonator optical
waveguides. The coupling between waveguides and multiple cavities is investigated and the reflection and
transmission coefficients are derived.

PACS number~s!: 42.79.Gn, 42.25.Bs, 42.60.Da, 42.82.Et
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I. INTRODUCTION

It is now well known that a photonic band gap@1–3#
exists for certain types of dielectric structure whose dielec
constant varies periodically in space. These types of die
tric structure are generally referred to as photonic cryst
By modifying some unit cells within the photonic crystal, w
can create defects may support localized highQ modes@4–6#
or propagating waveguide modes@4,7#. If we couple the lo-
calized defect modes with waveguides, many interes
phenomena will occur@8–15#. For example, resonant tunne
ing through the photonic crystal via the localized defe
modes has been numerically analyzed@8,9# and experimen-
tally observed@10,11#. Recently, a channel add-drop filte
based on coupled waveguide-resonator systems in a pho
crystal was proposed@12–14#. It was shown that, for defec
cavities satisfying certain symmetry and degeneracy co
tions, optical signals can be completely transferred from
waveguide to another. Waveguide-resonator coupling
also been explored in many other geometries, such
coupled fiber-ring geometry@16#, coupled fiber-sphere ge
ometry @17,18#, or coupled semiconductor slab waveguid
microring geometry@19–21#. It is intuitively clear that the
presence of a resonator should have a profound impac
the reflection and transmission characteristics of the wa
guide. For a system composed of a waveguide and a res
tor that supports traveling wave modes, it was recently de
onstrated that the transmission characteristics dep
critically on the balance between waveguide-resonator c
pling and cavity loss; thus it was named ‘‘critical coupling
@22#. In this paper, we use scattering theory to show that
the general system of coupled waveguide-resonator as sh
in Fig. 1~a!, the reflection and transmission coefficients d
pend critically on the waveguide-resonator coupling,
symmetry and degeneracy of the resonant modes, cavity
~gain!, and mode resonant frequency.

Besides the much studied waveguide-resonator coup
multiple optical resonators that are directly coupled toget
via an evanescent optical field have also been investigate
the literature, such as photonic molecules@23–25#, an impu-
rity band in an infinite chain of spheres with negative diele
tric constant@26#, and coupled resonator optical waveguid
~CROW’s! @27,28#. All these geometries can be well unde
PRE 621063-651X/2000/62~5!/7389~16!/$15.00
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stood using the tight-binding approximation@29#, where the
optical mode of the whole system can be regarded as a li
combination of the optical modes within each individual ca
ity. As a result of the direct coupling between the near
resonators, many interesting phenomena, such as mode
quency splitting in photonic molecules and waveguiding
CROW’s, will occur. If we couple multiple resonators with
waveguide, then as well as direct resonator-resonator c
pling the resonators can also be indirectly coupled toge
by the propagating modes within the waveguide, as show
Fig. 1~b!. We call this type of waveguide an indirect CROW
since the cavities are indirectly coupled together. A uniq
feature of such an indirect CROW is that the tight-bindi
approximation no longer applies, since any two resona
~not just the neighboring resonators! in Fig. 1~b! can be
coupled through the waveguide modes. Based on scatte
theory, we propose a matrix formalism to study this type
CROW.

Another natural application of scattering analysis is
find the reflection and transmission coefficients for comp
cated coupled waveguide-resonator system. In the literat
many different numerical algorithms@8,9,30–33# have been
used to find the scattering characteristics of various dielec

FIG. 1. ~a! The general geometry of a waveguide coupled with
cavity. ~b! Example of a CROW with indirect coupling.
7389 ©2000 The American Physical Society
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structures. The benefit of the numerical approach is that
capable of analyzing dielectric structures of complicated
ometries, such as photonic crystals. On the other hand,
numerical calculations are often time consuming and can
be easily generalized. Since the dielectric structure con
ered here can be separated into waveguides and loca
high Q resonators, its scattering amplitude can be found a
lytically. In this paper, we use scattering theory to analy
cases where multiple cavities are coupled to a waveguide
give the scattering amplitude of these structures. It is a
worth mentioning that coupled mode theory has also b
used to treat coupled waveguide-resonator systems, if
resonator supports only one highQ mode@14,34#.

The scattering theory formalism of this paper is based
the quantum Lippman-Schwinger equation@35# and re-
sembles the method applied in Ref.@13#, where the photonic
crystal defect cavity add-drop filter was analyzed. We brie
summarize the scattering theory in Sec. II and discuss s
additional important points that were not previously a
dressed. In Sec. III, we utilize the scattering theory to stu
two generic cases of coupled waveguide-resonator sys
and derive their optical reflection and transmission coe
cients. Based on these results, we analyze several si
systems in Sec. IV and discuss in detail the dependenc
the optical reflection and transmission on the cavity mo
properties and waveguide-resonator coupling. Next, in S
V, we propose the concept of an indirect CROW and give
expression for its photonic dispersion relation. In Sec. VI,
give the scattering analysis of more complicated coup
waveguide-resonator systems. We summarize the resul
Sec. VII.

II. SCATTERING-THEORY FORMALISM

The Maxwell equation can be rewritten in the form

i
]

]t
c5Hc, ~2.1a!

c5F EW

HW
G , H5F 0 ~ i /e!¹W 3

~2 i /m0!¹W 3 0 G . ~2.1b!

If we introduce the inner product as

^c2uc1&5
1

2 S E d3r e~rW !EW 2* •EW 11m0E d3r HW 2* •HW 1D ,

~2.2!

it is easy to verify that the HamiltonianH is a Hermitian
operator. For the weakly coupled waveguide-resonator
tem as shown in Fig. 1~a!, the HamiltonianH can be sepa-
rated into a 0th order approximationH0 where the wave-
guide modes and the localized highQ modes are
independent, and a perturbation termV that couples them
together,

H5H01V, ~2.3a!

H05(
ki

vki
uki&^ki u1(

n
Vnun&^nu, ~2.3b!
is
-
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V5 (
mÞn

Vm,num&^nu1(
n,ki

~Vn,ki
un&^ki u1Vki ,nuki&^nu!.

~2.3c!

In this Hamiltonian we useun& to represent thenth high Q
optical mode with ‘‘bare’’ resonant frequencyVn , and uki&
to represent the waveguide mode with wave vectorki . Here
we assume that the waveguide supports only one propaga
mode, since multimode waveguides are usually undesira
in optoelectronics applications. Bothuki& andun& are normal-
ized to 1 according to Eq.~2.2!. We also requireVm,n

5Vn,m* andVn,ki
5Vki ,n* , since the Hamiltonian is Hermitian

In this Hamiltonian, we ignore the direct coupling betwe
the waveguide modes~i.e.,Vki ,kj

50), which will be justified
later in this paper. An explicit form for the perturbation ter
Vj ,i can be obtained from Eq.~2.1! and Eq.~2.2!,

Vj ,i5^c j uVuc i&5
v i

2 E d3r @e0~rW !#2DF 1

e~rW !
GEW j* •EW i ,

~2.4!

whereEW i andEW j are, respectively, the electric fields asso
ated with modesuc i& and uc j&, v i is the resonant frequenc
of mode uc i&,e0(rW) refers to the dielectric constant of th
unperturbed HamiltonianH0, andD@1/e(rW)# is the difference
of 1/e(rW) between the full HamiltonianH and its 0th order
approximationH0.

Following Ref.@13#, we use the waveguide modeuki& as
the incident optical wave, and assume that the total w
function is given by uc total&. These two statesuki& and
uc total& are related via the scattering matrixT @35#

uc total&5uki&1
1

vki
2H01 i e

Vuc total&5Tuki&, ~2.5!

where e is a positive infinitesimal number to enforce th
outgoing boundary condition. It is easy to verify that th
scattering matrixT can be expressed as

Tkj ,ki
5^kj uTuki&

5dkj ,ki
1

1

vki
2vkj

1 i e (
m,n

Vkj ,mGm,n

3~vki
!Vn,ki

, ~2.6a!

Tn,ki
5^nuTuki&5(

m
Gn,m~vki

!Vm,ki
, ~2.6b!

where in Eq.~2.6a! dkj ,ki
is 1 if ki5kj and zero otherwise

The physical meaning of Eq.~2.6a! is clear: The stateuki&
can be scattered into the stateukj& in two ways, the direct
transition as represented bydkj ,ki

, and the indirect transition

through the localized highQ modesun& as represented by th
second term on the right-hand side of Eq.~2.6a!. The term
Gm,n represents the matrix element of the ‘‘renormalize
Green functionG and is given byGm,n(v)5^mu(v2H
1 i e)21un&. Its inverse matrixG21 can be evaluated as



l
n
th

s

de

na

er

in
o
e
tio

te

e

lc

be

e
of

te
of

fol-

ve,

de-
Fig.
so-

de
o

PRE 62 7391SCATTERING-THEORY ANALYSIS OF WAVEGUIDE- . . .
~G21!m,n5~v2Vn!dm,n2Sm,n , ~2.7a!

Sm,n~v!5Vm,n1(
ki

Vm,ki

1

v2vki
1 i e

Vki ,n . ~2.7b!

The derivation of Eqs.~2.6! and ~2.7! can be found in Ap-
pendix A. Generally, theS matrix has some off-diagona
elements, so that finding the renormalized Green functioG
can be quite involved. However, in some cases where
high Q resonators have definite symmetry properties,S is
already diagonalized by the unperturbed statesun&. Therefore
the renormalized Green function can be simply written a

Gm,n~v!5
1

v2vn1 iGn
dm,n , ~2.8!

wherevn is the renormalized frequency of modeun& andGn
is the mode decay rate.

Now we can justify the neglect of the direct wavegui
mode interactionVkj ,ki

in the Hamiltonian Eq.~2.3!. With
such a term, the scattering matrix will have an additio
nonresonant contributionTkj ,ki

nr ;Vkj ,ki
/(vki

2vkj
1 i e) @see

Eq. ~2.5!#. Comparing this quantity with the resonant scatt
ing amplitudeTkj ,ki

r due to thenth mode, we have

Tkj ,ki

r

Tkj ,ki

nr
;

Vkj ,nGn,nVn,ki

Vkj ,ki

, ~2.9!

where we have used Eq.~2.6a!. If the waveguide length is
L,Vkj ,ki

is of the order ofvki
/L according to Eq.~2.4!, while

Vkj ,nVn,ki
is of the order ofvki

2 /L. Substituting Eq.~2.8! into

the above equation, it is obvious that the indirect scatter
via the nth high Q mode has an enhancement factor
vki

/(vki
2vn1 iGn). Therefore, if we are interested in th

resonant behavior, the direct waveguide mode interac
Vkj ,ki

can generally be ignored.
Besides enhanced scattering amplitude, the optical in

sity in the resonators is also increased. From Eq.~2.6b! and
Eq. ~2.8!, we find the localized mode amplitude to be

Tn,ki
5^nuTuki&5

Vn,ki

vki
2vn1 iGn

, ~2.10!

which means that the mode amplitude at the resonanc
inversely proportional to the mode decay rate.

The mode decay rateGn plays an important role in the
problem of waveguide-resonator coupling and can be ca
lated as follows. Using Eq.~2.7!, we find

Sn,n~v!5(
ki

uVn,ki
u2

1

v2vki
1 i e

5
L

2pE dvki

1

vg
~ uVn,ki

u21uVn,2ki
u2!

1

v2vki
1 i e

,

~2.11!
e

l
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whereki is the wave vector of the propagating mode, andvg
represents the photon group velocity and is assumed to
positive for anyki.0. Evaluating the integral, we find

Im~Sn,n!52
L

2vg
~ uVn,ki

u21uVn,2ki
u2!. ~2.12!

If the mode representationun& is chosen such that only th
diagonal elements ofS are nonzero, the total decay rate
the modeun& is simply

Gn5Gn
01

L

2vg
~ uVn,ki

u21uVn,2ki
u2!, ~2.13!

whereGn
0 is the intrinsic cavity decay rate. We should no

that in Eq.~2.13! the decay rate is actually independent
the waveguide lengthL, since ^ki uki&51 and thusVn,ki

is

proportional to 1/AL.
Once the scattering matrixT is known, the optical reflec-

tion and transmission coefficients can easily be found as
lows. If we usec i(rW),c r(rW), andc t(rW) to represent the inci-
dent wave, the reflected wave, and the transmitted wa
respectively, then they can be related to theT matrix through
the following simple relations:

c i~rW !1c r~rW !5^x→2`uTuki&5(
kj

^x→2`ukj&Tkj ,ki
,

~2.14a!

c t~rW !5^x→1`uTuki&5(
kj

^x→1`ukj&Tkj ,ki
.

~2.14b!

This method is essentially the same as that in Ref.@13#.

III. OPTICAL SCATTERING IN TWO GENERIC
COUPLED WAVEGUIDE-RESONATOR SYSTEMS

We study two generic cases of coupled wavegui
resonator systems as illustrated in Fig. 2. The case in
2~a! is denoted as the ‘‘side coupling’’ case, since the re

FIG. 2. ~a! The side coupling case, where a cavity is si
coupled to a waveguide.~b! The resonant coupling case, where tw
waveguides are coupled by a highQ cavity.
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nator is located at the side of an infinite waveguide. For
geometry shown in Fig. 2~b!, the two half waveguides ar
coupled together via resonant tunneling through the ce
cavity. Consequently we name it the ‘‘resonant couplin
case. It should be noted that the waveguides and reson
in Fig. 2 can be of any type. In particular, the analysis of t
section applies to photonic crystal waveguides and de
cavities. Therefore, we assume that the waveguides poss
one-dimensional discrete translational symmetry. Wa
guides with continuous translational symmetry, such as s
waveguides or optical fibers, can be regarded as a sp
case.

First let us consider the side coupling case. We assu
that the waveguide modeuki& has the following general form
~using the Bloch theorem!:

fki
~rW !5

1

AN
uki

~rW !eikix, ~3.1a!

uki
~rW !5uki

~rW1Rêx!, ~3.1b!

whereN is the total number of unit cells in the waveguid
and uki

(rW) is normalized to 1 within a unit cell.R is the
length of a unit cell.

We assume that the incoming wave is the wavegu
modeuki&. Therefore, the incident wavec i(rW) in Eq. ~2.14!
is simply fki

(rW) and the transmitted wavec t(rW) at x→1`

is

c t~rW !5fki
~rW !1(

n

Vn,ki

vki
2vn1 iGn

L

2pAN

3E dkjukj
eik j x

Vkj ,n

2vg~kj2ki !1 i e
, ~3.2!

where Eq.~2.6a!, Eq. ~2.8!, and Eq.~2.14! are used, and we
transform the summation overkj into an integral. Evaluating
the integral, we find the transmitted wave to be

c t~rW !5
1

AN
uki

~rW !eikixF12 i(
n

1

vki
2vn1 iGn

LuVki ,nu2

vg
G ,

~3.3a!

Gn5Gn
01

L~ uVki ,nu21uV2ki ,nu2!

2vg
. ~3.3b!

In a similar way, we use Eq.~2.14! and find the optical wave
at x→2` to be

c i~rW !1c r~rW !5fki
~rW !1(

n

Vn,ki

vki
2vn1 iGn

(
kj

fkj
~rW !

3
Vkj ,n

vki
2vkj

1 i e
. ~3.4!

We transform the summation overkj into an integral and find
c r(rW) to be
e

er
’
ors
s
ct
s a
-
b
ial

e

e

c r~rW !52 i(
n

1

vki
2vn1 iGn

LV2ki ,nVn,ki

vg

3F 1

AN
u2ki

~rW !e2 iki xG . ~3.5!

If we use r and t to denote the amplitude reflection an
transmission coefficient, respectively the above results
be summarized as

r 52 i(
n

1

vki
2vn1 iGn

LV2ki ,nVn,ki

vg
, ~3.6a!

t512 i(
n

1

vki
2vn1 iGn

LuVki ,nu2

vg
, ~3.6b!

Gn5Gn
01

L~ uVki ,nu21uV2ki ,nu2!

2vg
. ~3.6c!

The side coupling geometry can actually be regarded as
of the photonic crystal add-drop filter considered in R
@12–14#. The above results are also similar to those in R
@13#. However, we also point out a subtle but important d
ference: we consider the possibility of gain or loss in t
cavity, which is represented byGn

0 in Eq. ~3.6!. A more de-
tailed discussion will be given in the next section.

Next we study the case of resonant coupling as show
Fig. 2~b!, which to the best of our knowledge has not be
analyzed before using the scattering-theory formalism. H
for notational convenience we assume that both wavegu
are along thex direction, even though the results do n
depend on this assumption. In reality, the two wavegui
can have an arbitrary bending angle, as long as the di
interaction between them can be ignored.

We assume that both waveguides consist ofN unit cells,
and the normalized waveguide modes in waveguide 1
waveguide 2 are uncoupled and can be expressed, res
tively, as

^rWuki&5
1

A2N
@uki

~rW !eikix1uki
* ~rW !e2 iki x# in waveguide 1;

~3.7a!

^rWuqj&5
1

A2N
@vqj

~rW !eiq jx1vqj
* ~rW !e2 iq j x# in waveguide 2.

~3.7b!

We useuki& anduqj& to represent modes in waveguide 1 a
waveguide 2, withki andqj referring to their wave vectors
As before, bothuki

(rW) and vqj
(rW) are normalized within a

unit cell. We assume that the unit cell length in waveguid
is R1 and the total waveguide length isL15NR1. For wave-
guide 2, the unit cell length isR2 and the total length isL2
5NR2.

According to Eq.~2.14!, the optical wave atx→2` ~in
waveguide 1! consists of the incident wavec i(rW) and the
reflected wavec r(rW):
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c i~rW !1c r~rW !5E dkj

L1

pA2N
@ukj

eik j x1c.c.#

3F dkj ,ki
1

1

vki
2vkj

1 i e (
n

Vkj ,nVn,ki

vki
2vn1 iGn

G .

~3.8!

Evaluating the integral, we find

c i~rW !5
1

A2N
uki

~rW !eikix, ~3.9a!

c r~rW !5
1

A2N
uki
* ~rW !e2 iki xF12 i(

n

uVki ,nu2

vki
2vn1 iGn

2L1

vg
1 G ,

~3.9b!

wherevg
1 is the photon group velocity in waveguide 1 and

assumed to be positive. The transmitted wavec t(rW) at x→
1` ~in waveguide 2! can be found similarly, as

c t~rW !5
L2

pA2N
E dqj~vqj

eiq jx1c.c.!

3
1

vki
2vqj

1 i e (
n

Vqj ,nVn,ki

vki
2vn1 iGn

5
1

A2N
vqj

~rW !eiq jx

3F22i(
n

1

vki
2vn1 iGn

L2Vqj ,nVn,ki

vg
2 G ,

~3.10!

where qj is the wave vector of the propagating mode
waveguide 2 and is determined by the conditionvqj

5vki
,

and vg
2 is the corresponding photon group velocity and

assumed to be positive.
Since the photons in the highQ cavity can independently

decay into both waveguide 1 and waveguide 2, the decay
of the nth modeGn will simply be the sum of the two pro
cesses. Collecting the results, for the resonant coupling c
we have

c i~rW !5
1

A2N
uki

~rW !eikix, ~3.11a!

c r~rW !5
1

A2N
uki
* ~rW !e2 iki x

3F12 i(
n

1

vki
2vn1 iGn

2L1uVki ,nu2

vg
1 G ,

~3.11b!
te

se,

c t~rW !5
1

A2N
vqj

~rW !eiq jx

3F2 i(
n

1

vki
2vn1 iGn

2L2Vqj ,nVn,ki

vg
2 G ,

~3.11c!

Gn5Gn
01

L1uVn,ki
u2

vg
1

1
L2uVn,qj

u2

vg
2

. ~3.11d!

The cavity mode decay rateGn in Eq. ~3.11d! is different
from Eq. ~2.13!, because we assume the waveguide supp
traveling waves in deriving Eq.~2.13!, yet the waveguide
modes we use in the resonant coupling case are essen
standing waves@see Eq.~3.7!#. It is interesting to compare
the above results, Eq.~3.11!, with Eq. ~3.6!, and observe tha
the reflection and transmission in the resonant coupling c
correspond, respectively, to the transmission and reflectio
the side coupling geometries.

The Bloch wave functionsuki
or vqj

in Eq. ~3.7! are nor-
malized to 1 within a unit cell. Thus the power fluxP in the
waveguide satisfies the relation

P}uAu2
vg

R
, ~3.12!

where R is the size of a unit cell,vg is the photon group
velocity, andA is the amplitude of the optical wave. As a
example,A5exp(ikix)/A2N for the incident wavec i(rW) in
Eq. ~3.11a!. Combining Eq.~3.11! and Eq.~3.12!, we find
the power reflection coefficientR and transmission coeffi
cient T to be

R5U12 i(
n

1

vki
2vn1 iGn

2L1uVki ,nu2

vg
1 U2

, ~3.13a!

T5U(
n

1

vki
2vn1 iGn

2L2Vqj ,nVn,ki

vg
2 U2

vg
2R1

vg
1R2

.

~3.13b!

IV. CRITICAL COUPLING IN COUPLED
WAVEGUIDE-RESONATOR SYSTEMS

The simplest case of side coupling is a single mode re
nator coupled with a single mode waveguide, as shown
Fig. 3~a!. It is worth mentioning that a specific example
this side coupling geometry has been investigated in R
@34#, where the single mode resonator is the quarter w
shifted distributed feedback resonator. In our case, the ca
decay rateGc due to the presence of waveguide is given
Eq. ~2.13!,

Gc5G2
c 1G1

c 5
L

2vg
uVn,2ku21

L

2vg
uVn,ku2, ~4.1!

where we use G2
c 5(L/2vg)uVn,2ku2 and G1

c

5(L/2vg)uVn,ku2 to represent the decay in the2 x̂ and 1 x̂
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FIG. 3. ~a! Sketch of a single
mode resonator side coupled to
single mode waveguide.G2

c and
G1

c are, respectively, the cavity

decay rate in the2 x̂ and 1 x̂ di-
rections. For a resonator with mir
ror reflection symmetry with re-
spect to thex50 plane,G2

c 5G1
c .

~b! The resonant (Dv50) reflec-
tion and transmission coefficient
for the waveguide side coupled t
a single mode resonator.G0 repre-
sents the intrinsic cavity loss
~gain!, andGc is the decay rate of
the cavity mode into the wave
guide.~c! Reflection and transmis
sion spectra for four different val-
ues ofG0/Gc.
if
re

t

n

c

ti
he

lu
he

An
th

n

e
l-

mis-
We

d

hat
directions, respectively. A further simplification is possible
the cavity possesses a mirror reflection symmetry with
spect to thex50 plane, which givesG2

c 5G1
c 5Gc/2. From

Eq. ~3.6!, we find the power reflection coefficientR and
transmission coefficientT to be

R5ur u25
~Gc!2

Dv21~G01Gc!2
, ~4.2a!

T5utu25
Dv21~G0!2

Dv21~G01Gc!2
, ~4.2b!

whereG0 represents the intrinsic loss~gain! of the resonator,
andDv is v2V, with v being the frequency of the inciden
light andV being the resonant mode frequency.

In Fig. 3~b!, we show the resonant (Dv50) reflection
coefficientR and transmission coefficientT as functions of
G0/Gc. Notice that atG0/Gc50 the resonant transmissio
coefficientT becomes zero and the reflection coefficientR is
1. On the other hand, when the intrinsic cavity loss is mu
larger than the cavity-waveguide coupling, i.e.,G0/Gc@1,
the transmission coefficient approaches 1 and the reflec
coefficient almost vanishes. If we introduce gain into t
cavity and the lasing condition is approached, i.e.,G0/Gc→
21, bothR andT become very large. In Fig. 3~c!, we plot
the transmission and reflection spectra using different va
of G0/Gc, which clearly shows the critical dependence of t
reflection and transmission characteristics on bothDv and
G0/Gc. Of particular interest is the case ofG0/Gc520.5,
which gives a flat transmission coefficient equal to 1.
obvious application of this critical dependence, similar to
-

h

on

es

e

phenomenon of critical coupling observed in Ref.@22#, is the
possibility of controlling optical transmission and reflectio
by tuningDv, G0, or Gc.

In reality, it is difficult to fabricate a dielectric structur
with perfect mirror reflection symmetry and there will a
ways be some small difference betweenG1

c and G2
c . With

symmetry broken, the reflection coefficientR and transmis-
sion coefficientT are

R5ur u25
4G2

c G1
c

Dv21~G01G2
c 1G1

c !2
, ~4.3a!

T5utu25
Dv21~G01G2

c 2G1
c !2

Dv21~G01G2
c 1G1

c !2
. ~4.3b!

These results show that the general reflection and trans
sion features of the system are not significantly changed.
can still achieve zero resonant (Dv50) transmission by tun-
ing G05G1

c 2G2
c . Unity transmission can also by achieve

by choosingG052G2
c .

In the next case, we consider a side coupled cavity t
supports two degenerate modes with frequencyV. We re-
write Eq. ~3.6! as

r 52 i (
n51

2
1

Dv1 iGn

L

vg
V2k,nVn,k , ~4.4a!

t512 i (
n51

2
1

Dv1 iGn

L

vg
uVk,nu2, ~4.4b!
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FIG. 4. ~a! Sketch of a wave-
guide side coupled with a cavity
supporting two degenerate mode
The cavity possesses a mirror re
flection symmetry with respect to
thex50 plane and the doubly de
generate modes have opposite pa
ity under mirror reflection. The
even mode isue& and the odd
mode isuo&. ~b! The side coupling
geometry where two traveling
waves are supported in the cavity
The two modes travel in opposit
directions and are degenerate d
to the time reversal symmetry
The mode traveling in the clock
wise direction is u1& and the
mode traveling in the counter
clockwise direction is u2&. ~c!
The resonant transmission coeffi
cient as a function ofG0/Gc. ~d!
The transmission spectrum for dif
ferent values ofG0/Gc.
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Gn5Gn
01Gn

c5Gn
01

L

2vg
uVk,nu21

L

2vg
uV2k,nu2,

~4.4c!

where we use the convention ofDv5v2V.
For this doubly degenerate side coupling geometry, t

simple cases are of special interest. The first exampl
when the resonator possesses a mirror reflection symm
with respect to thex50 plane and the two degenerate mod
have opposite parity, as shown in Fig. 4~a!. Assuming the
even mode isue& and the odd mode isuo&, Eq. ~2.4! gives

Vk,e5V2k,e ,Vk,o52V2k,o , ~4.5!

where Vk,e represents the coupling between the incid
wave uk& and the even cavity modeue&, andVk,o represents
the coupling betweenuk& and the odd cavity modeuo&. We
follow Refs. @12,13# and assume that the waveguide mo
uk& couples equally strong with the even mode and the
mode, i.e.,

uVk,eu5uVk,ou. ~4.6!

Consequently, from Eq.~4.4! we obtain

R50, T5
Dv21~G02Gc!2

Dv21~G01Gc!2
, ~4.7!
o
is
try
s

t

d

whereGc is Gc5LuVk,eu2/vg . We notice the remarkable re
sult that the reflection coefficientR remains 0 for all frequen-
cies. This is a direct consequence of the destructive inter
ence between the reflected waves due to the two degen
cavity modes, as was pointed out in Ref.@12#. In fact, this
side coupling geometry can be regarded as half of the p
tonic crystal add-drop filters studied in Refs.@12–14#. Here
the coupling to the second waveguide is represented by
‘‘intrinsic’’ cavity decay rateG0.

In addition to the condition of frequency degeneracy a
equal mode decay rate, Eq.~4.6! must also be strictly satis
fied to eliminate reflection. It is very difficult to simulta
neously realize these requirements during the fabrica
processes. In practice, it is easier to fabricate semicondu
ring or disk resonators@19–21# and dielectric microsphere
@17,18#, which support two counterpropagating modes,
shown in Fig. 4~b!. In the following analysis, we show tha
the reflection and transmission coefficients of a wavegu
coupled to this type of resonator are also described by
~4.7!.

If the waveguide mode and the traveling wave mode
the resonator are phase matched, it is safe to assume tha
waveguide mode can induce a traveling wave circulating
only one direction. As shown in Fig. 4~b!, we denote the
clockwise circulating mode asu1& and the counterclockwise
mode asu2&. Using these notations, the condition for phas
matched coupling isVk,250 and V2k,150. Furthermore,
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FIG. 5. ~a! A sketch of two
waveguides of the same typ
coupled together via a highQ
resonator supporting a singl
mode, which is the simplest cas
of resonant coupling.~b! The
resonant reflection and transmis
sion coefficients of the coupled
waveguide-resonator system
shown in ~a!. ~c! The reflection
and transmission spectra of th
coupled waveguide-resonant sy
tem with different parameters o
G0/Gc.
d
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using Eq. ~2.4! and the time reversal symmetry, we fin
Vk,15V2k,2* . With these conditions, from Eq.~4.4! we
have

R5ur u250, ~4.8a!

T5utu25
Dv21~G02Gc!2

Dv21~G01Gc!2
, ~4.8b!

Gc5
L

2vg
uVk,1u25

L

2vg
uV2k,2u2. ~4.8c!

The above result is the same as Eq.~4.7!.
In Fig. 4~c!, the resonant (Dv50) transmission coeffi-

cient was plotted as a function ofG0/Gc. Notice that at
G0/Gc51 T is always equal to zero. This phenomenon is
principle behind many add-drop filters studied in the lite
ture @12–14,19–21#, and was named critical coupling in Re
@22#. The above result forT also applies for the case whe
gain is introduced, i.e.,G0,0. The transmission spectrum
shown in Fig. 4~d! for different values ofG0/Gc. We notice
that when the lasing threshold is approached (G0/Gc→21)
the optical wave is amplified and the resonance width is n
rowed.

For the case of resonant coupling, we limit ourselves
the simplest case, which is composed of two wavegui
coupled via a single mode highQ resonator, as shown in Fig
5. As a further simplification, we assume that the tw
waveguides are the same type and have the same uni
lengthR and total lengthL. Thus Eq.~3.13! becomes

R5
~Dv!21~G01G1

c 2G2
c !2

~Dv!21~G01G1
c 1G2

c !2
, ~4.9a!

T5
4G2

c G1
c

~Dv!21~G01G1
c 1G2

c !2
, ~4.9b!
e
-

r-

o
s

ell

G2
c 5

L

vg
uVn,ki

u2, G1
c 5

L

vg
uVn,qj

u2, ~4.9c!

where as before we useG0 to represent the intrinsic cavity
loss or gain,G2

c represents the cavity decay rate into wav
guide 1, andG1

c represents the cavity decay rate into wav
guide 2. From the above equations, we find that at resona
(Dv50) it is necessary to satisfy the condition ofG050
andG2

c 5G1
c to realizeR50 andT51 ~i.e., photon resonan

tunneling!.
To reduce the number of parameters in our analysis,

assumeG2
c 5G1

c , which allows us to use a single paramet
Gc52G2

c and simplify Eq.~4.9! as

R5
~Dv!21~G0!2

~Dv!21~G01Gc!2
, ~4.10a!

T5
~Gc!2

~Dv!21~G01Gc!2
. ~4.10b!

It is interesting to notice that the above result is very simi
to Eq. ~4.2!, which gives the reflection and transmission c
efficients for a waveguide side-coupled with a single mo
waveguide. The only difference between the two cases is
the reflection coefficient in Eq.~4.2! corresponds to the
transmission coefficient in Eq.~4.10!, and the transmission
coefficient in Eq.~4.2! corresponds to the reflection coeffi
cient in Eq.~4.10!.

In Fig. 5~b!, we show the resonant reflection and tran
mission coefficients as functions ofG0/Gc. In Fig. 5~c!, we
plot the reflection and transmission spectra using various
rameters ofG0/Gc. As expected, we find that Figs. 5~b! and
5~c! are the same as Figs. 3~b! and 3~c!, if we identify the
transmission and reflection in Fig. 5 with the reflection a
transmission, respectively, in Fig. 3.
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V. DISPERSION RELATION OF INDIRECT CROW

In the literature, most of the studies on systems of coup
resonators utilized the tight-binding approximation@23–28#.
However, for the structure shown in Fig. 6, where a wa
guide is side coupled to an array of highQ resonators, the
tight-binding approximation no longer applies. It is obvio
in Fig. 6 that any two resonators in this type of CROW c
be coupled to each other via the propagating modes in
waveguide. We shall name this type of CROW an indir
CROW, since the resonators are indirectly coupled toge
via the propagating modes in the waveguide. In this sect
we develop a matrix formalism to analyze the indire
CROW’s.

To simplify our analysis, we limit ourselves to CROW
with large intercavity distanceR, which enables us to ignor
the direct coupling between the resonators. For the struc
shown in Fig. 6, we write the optical wave to the immedia
left of the l th unit cell as

c~rW !ux5xl
5Aluk~rW !1Bluk* ~rW !

5ale
ikxluk~rW !1ble

2 ikxluk* ~rW !, ~5.1!

where uk(rW) is defined in Eq.~3.1!. We now introduce a
matrix formalism, in which a matrixM is used to relate the
optical wave to the left and the optical wave to the right
the l th unit cell,

F al 11

bl 11G5MF al

blG . ~5.2!

We notice that this approach is similar to the transfer ma
method that was widely used to describe one-dimensio
multilayer structures@36#. Using Eq.~3.3a!, Eq. ~3.5!, Eq.
~3.6!, and applying time reversal symmetry, we have the f
lowing relations for the matrixM:

F t

0G5MF 1

r G , F 0

t* G5MF r *

1 G . ~5.3!

From these two equations, the matrixM is determined to be

FIG. 6. An example of an indirect CROW, which consists o
waveguide side coupled to an array of highQ resonators.
d

-

e
t
er
n,
t

re

f

x
al

-

M5F 1

t*
2

r *

t*

2
r

t

1

t
G . ~5.4!

Combining Eq.~5.1!, Eq. ~5.2!, and Eq.~5.4!, we find

FAl 11

Bl 11G5F 1

t*
eikR 2

r *

t*
eik(xl1xl 11)

2
r

t
eik(xl1xl 11)

1

t
e2 ikR G FAl

BlG .

~5.5!

The eigenvalue equation for the matrix in the above equa
is simply

l22lS 1

t
e2 ikR1

1

t*
eikRD 1150. ~5.6!

According to the Bloch theorem and the definition ofAl and
Bl in Eq. ~5.1!, for any propagating wave inside a spatial
periodic structure, the eigenvaluel should be of the form
exp(6ibR), with b being the Bloch wave vector. Conse
quently, from Eq.~5.6!, we find

2 cos~bR!5
1

t
e2 ikR1

1

t*
eikR. ~5.7!

We consider a simple case of a CROW, where the re
nator possesses mirror reflection symmetry and supports
a single mode. Under this assumption, the reflection coe
cient t is given by Eq.~3.6!,

t5
Dv

Dv1 iGc
, ~5.8!

where we assume the cavity has no loss or gain, i.e.,G0

50. The term is defined asGc5LuVk,nu2/vg and represents
the coupling between the cavity and the waveguide. Us
Eq. ~5.7! and Eq.~5.8!, we obtain the dispersion relation fo
this indirect CROW,

cos~bR!5cos~kR!1
Gc

Dv
sin~kR!. ~5.9!

Notice thatk represents the wave vector of the pure wav
guide, andb represents the wave vector of the compou
system.

If the quantitykRÞnp, a direct consequence of Eq.~5.9!
is that no propagating mode exists at the renormalized re
nance frequencyv5V. In fact, under the condition o
sin(kR) not close to zero, for anyDv within the range ofGc,
the termGc/Dv will be larger than 1. According to Eq.~5.9!,
this means the formation of a band gap of the order ofGc

that contains the renormalized resonator frequencyV. If an
unperturbed waveguide band traverses the renormal
resonance frequency atk0, it is necessary that this waveguid
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band is split and a band gap is formed due to its coupling
the CROW structure. We assume a linear dispersion rela
for the unperturbed waveguide mode,

k5k01
1

vg
Dv, ~5.10!

whereDv5v2V. This assumption simplifies Eq.~5.9! as

cos~bR!5cosS k0R1
Dv

Gc

RGc

vg
D

1
Gc

Dv
sinS k0R1

Dv

Gc

RGc

vg
D . ~5.11!

From this expression, it is obvious that the photonic ba
structure of the compound waveguide depends critically
k0R, Gc, and R. For many photonic crystals, the mid-ga
frequency is typically of the valueva/2pc50.3, wherea is
the photonic lattice spacing andc is the light speed in free
space@3#. If we consider a compound waveguide formed
a photonic crystal waveguide and defect cavities, we
chooseR55a,vg50.3c, and the cavityQ ~consequently
v/Gc) between 100 and 1000. From these estimates, we
that the parameterRGc/vg is of the order of 0.05. In Fig. 7
we useRGc/vg50.05 and plot the indirect CROW band a
calculated from Eq.~5.11!. It is clearly demonstrated in Fig
7 that the photonic band of the indirect CROW splits
Dv50 and its resonant band structure depends critically
the value ofk0R.

On the other hand, if the propagating mode frequenc
far away from resonance, Eq.~5.9! can be solved asymptoti
cally. ForDv@Gc,b can be expanded aroundk to obtain an
approximate solution,

bR.kR2Gc/Dv, ~5.12!

which can be easily verified by substituting this result in
Eq. ~5.9!. Figure 8 shows the uncoupled waveguide band,
split waveguide bands aroundv0 calculated from Eq.~5.11!,

FIG. 7. The uncoupled waveguide band and the photonic b
of the indirect CROW calculated from Eq.~5.11!. In ~a! k0R
5p/2 and in ~b! k0R55p/6. We choose the parameterRGc/vg

50.05. The justification for this value is given in the text.
o
n

d
n

n

d

t
n

is

e

and the photonic bands obtained from the above asymp
approximation. It is interesting to notice that the asympto
approximation actually gives a fairly good description of t
indirect CROW bands.

In closing this section, we remark that if cos(k0R).61 it
is possible that one of the split bands becomes extremely
This scenario is illustrated in Fig. 9, wherek0R53.0 and
RGc/vg50.05. The nearly horizontal band lies close to t
resonance frequencyv5v0. The flatness of the band indi
cates extremely low propagating group velocity. The gro
velocity is reduced to a large extent due to the fact that, w
propagating through the indirect CROW structure, photo
are trapped inside the resonance cavities most of the t
This property may find applications when low photon prop
gating velocity is desired, such as in the case of band e
lasers@37#.

d FIG. 8. Dispersion relations of the indirect CROW bands. T
solid lines are the exact solutions of Eq.~5.11! with RGc/vg

50.05. The dashed line represents the uncoupled waveguide
and the stars are the approximate solutions given by Eq.~5.12!. In
~a!, we usek0R5p/2 and in~b! k0R55p/6.

FIG. 9. Near horizontal indirect CROW band. Photon gro
velocity is greatly reduced for the middle band shown above. T
dashed line is the unperturbed waveguide band. We usek0R53.0
andRGc/vg50.05.
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VI. OPTICAL TRANSMISSION AND REFLECTION
THROUGH A WAVEGUIDE COUPLED

WITH MULTIPLE CAVITIES

We have discussed the light reflection and transmiss
characteristics of some simple coupled waveguide-reson
systems in Sec. IV. Yet it is of both theoretical and practi
interest to investigate more complicated geometries. As
example, Fig. 10~a! shows a structure composed ofN iden-
tical resonators periodically side coupled to a straight wa
guide. To simplify our analysis, we assume that each re
nator is single mode and possesses mirror reflec
symmetry.

First we reconsider the case where a straight waveguid
coupled to a single cavity. As shown in Fig. 10~b!, we
choose the origin of thex coordinate such thatx5xo is the
mirror reflection symmetry plane of the system. As befo
we express the propagating waveguide mode as

c~rW !5aeik(x2xo)uk~rW !1be2 ik(x2xo)u2k~rW !, ~6.1!

where we choose the wave function of the propagating m
such that under the mirror reflection operationx2xo→2(x
2xo)

Ox5xo
@eik(x2xo)uk~rW !#5e2 ik(x2xo)u2k~rW !, ~6.2!

where the operatorOx5xo
represents the mirror reflectio

with respect to the planex5xo . Using the same matrix for
malism as in the previous section, from Eq.~3.6!, we know
that if the wave to the left of the resonator is described
@1 r #, then the wave to the right is given by@ t 0#. On the
other hand, if the wave to the right is@r 1#, the mirror

FIG. 10. ~a! A straight waveguide side coupled toN resonators.
The incident optical wave is described by@aibi #; the output optical
wave is given by@aobo#. ~b! A straight waveguide coupled to
resonator that possesses mirror reflection symmetry with respe
the planex5xo .
n
tor
l
n

-
o-
n

is

,

e

y

reflection symmetry dictates that the wave to the left must
@0 t#. Since the two waves can be related to each other
matrix M , we have

F t

0G5MF 1

r G , F r

1G5MF 0

t G , ~6.3!

which gives

M5F t22r 2

t

r

t

2
r

t

1

t

G . ~6.4!

When we study the case of a waveguide coupled toN
identical resonators as shown in Fig. 10~a!, the scattering by
each resonator can still be described by the matrixM as
given by Eq.~6.4!. However, to apply Eq.~6.4! to describe
the l th resonator, we need to choosexo in Eq. ~6.2! as xl .
Therefore, if the sameM matrix is used to describe the ne
resonator, we should switch to another basis of wave fu
tions wherexo is xl 115xl1R. Consequently, we have

F al 11

bl 11G5DF al

blG , ~6.5a!

D5F eikR 0

0 e2 ikRGF t22r 2

t

r

t

2
r

t

1

t

G . ~6.5b!

It should be remembered that the wave function basis
@al 11 bl 11# is different from that for @al bl #.

Assuming that the center of the first resonator is locate
x50, we choose the wave function basis according to
~6.1! with xo50. In thesamewave function basis, the outpu
optical wave@ao bo# after theNth resonator is related to th
incident wave@ai bi # through

F ao

boG5F e2 iNkR 0

0 eiNkRGDNF ai

biG . ~6.6!

We consider the simplest case where the cavity posse
mirror reflection symmetry and supports only a single mo
wherer can be found from Eq.~3.6!,

r 5
2 i

Dv1 i ~G01Gc!

L

vg
V2k,nVn,k . ~6.7!

Assuming that the parity of the cavity mode is given byP,
from Eq. ~2.4!, we have

V2k,n5PVk,n . ~6.8!

Using this relation, Eq.~6.7! is simplified as

to
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r 52 i
PGc

Dv1 i ~G01Gc!
. ~6.9!

The transmission coefficient is
w

al

en

tio
s

ar
t5
Dv1 iG0

Dv1 i ~G01Gc!
. ~6.10!

Substituting Eq.~6.9! and Eq.~6.10! into Eq. ~6.5b!, we find
D5
1

Dv1 iG0 F eikR@Dv1 i ~G02Gc!# 2 iPGceikR

iPGce2 ikR e2 ikR@Dv1 i ~G01Gc!#G . ~6.11!
the

f
ter-

f

-

led

e

a

-

To find the reflection and transmission coefficients,
calculateDN by using the procedure in Ref.@38#. First we
obtain the eigenvalue equation of matrixD:

l222lFcos~kR!1
Gc

Dv1 iG0
sin~kR!G1150.

~6.12!

Then we use the Hamilton-Cayley theorem@39#, which says
that the matrix obeys the same equation as its eigenv
equation,

D222DFcos~kR!1
Gc

Dv1 iG0
sin~kR!G1150.

~6.13!

Thus, if we defineb as

cos~bR!5cos~kR!1
Gc

Dv1 iG0
sin~kR!, ~6.14!

we find @39#

DN5D
sin~NbR!

sin~bR!
2I

sin~N21!bR

sin~bR!
, ~6.15!

whereI is the identity matrix.
With the optical amplitude at the input and output giv

by Eq. ~6.6! and the expression forDN given by Eq.~6.15!,
we can easily evaluate the optical transmission and reflec
coefficients due to the presence ofN resonators. The result
in general depend critically on the values ofDv, G0/Gc,N,
andk0R. However, under the condition ofDv50 andk0R
5np, the optical transmission and reflection coefficients
of simple form. In this case,D andDN can be evaluated as

D5~21!nF 12
Gc

G0 2P
Gc

G0

P
Gc

G0 11
Gc

G0

G , ~6.16!

and
e

ue

n

e

DN5~21!NnF 12
NGc

G0 2P
NGc

G0

P
NGc

G0 11
NGc

G0

G . ~6.17!

The power transmission and reflection coefficients of
whole system can readily be calculated as

T5
1

~11NGc/G0!2 , R5F NGc/G0

11NGc/G0G2

. ~6.18!

It is evident from Eq.~6.18! that under the condition o
k0R5np the resonant transmission and reflection charac
istics of a waveguide coupled toN equally spaced single
mode resonators each with intrinsic lossG0 are the same as i
the waveguide is coupled to asingleresonator with intrinsic
lossG0/N, which was analyzed in Sec. IV. In general, how
ever, such a scaling property with respect toN does not hold
for arbitrary values ofDv and k0R. In the rest of this sec-
tion, we shall use Eq.~6.6!, Eq. ~6.14!, and Eq.~6.15! to find
the transmission and reflection properties of such coup
waveguide-resonator systems. The parameterb as defined in
Eq. ~6.14! is very similar to the Bloch wave vector of th

FIG. 11. The transmission and reflection coefficients of
straight waveguide side coupled toN resonators, withN52 and
N56, respectively.G0/Gc50 andk0R5p/2 are used in the calcu
lations. As in the previous calculations of band structures,RGc/vg

50.05.
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compound waveguide in the previous section and can
calculated using the same assumption of linear dispersion
all the calculations ofb, we choose the sameRGc/vg
50.05.

In Fig. 11, we show the transmission and reflection sp
tra for a waveguide coupled toN52 andN56 resonators.
We assume that there is no loss or gain andk0R5p/2. It is
interesting to notice that for only two resonators the tra
mission dip and the reflection peak are no longer Lorentz
and relatively flat. For the case ofN56, the transmission dip
aroundDv50 becomes extremely flat. We also observe
rapid oscillation of the transmission coefficient around
transmission dip, which is caused by the optical interfere
between the six resonators.

In Fig. 12~a!, we assume thatk0R50,G0/Gc50 and show
the transmission spectrum for a waveguide coupled toN
52,N56, andN520 cavities. It is interesting to notice tha
only the case ofN520 resonators produces a flat transm
sion dip. In Fig. 12~b!, we show the photonic bands in th
indirect CROW that corresponds to the coupled wavegu
resonator system in Fig. 12~a!. We notice that the band ga
in the indirect CROW corresponds exactly to the transm
sion dip of N520 resonators in Fig. 12~a!. It is interesting
that in Fig. 11 (k0R5p/2), it takes only six resonators t
produce a flat transmission dip, while under the condition
k0R50 it requires 20 resonators.

We have observed in the previous section that it is p
sible to create a very flat photonic band close toDv50 in an
indirect CROW~see Fig. 9, wherek0R53.0 is used!. We use
the same value ofk0R to evaluate the optical transmissio
through a waveguide coupled toN lossless resonators, wit
N equal to 2 and 10. The results are shown in Fig. 13. For
case ofN52, we observe the presence of a narrow transm
sion peak aroundDv50. For N510, multiple high trans-
mission peaks are formed within the frequency range o
,Dv/Gc,2.5, which roughly corresponds to the fl

FIG. 12. ~a! The transmission spectrum of a straight wavegu
side coupled toN resonators, withN52,N56, andN520, respec-
tively. G0/Gc50,k0R50, andRGc/vg50.05 are used in the calcu
lations.~b! The photonic band of a straight waveguide side coup
to an infinite array of resonators like those in~a!. The band struc-
tures are calculated using Eq.~5.11!, with k0R50 and RGc/vg

50.05. It is clear that the band gap in~b! corresponds to the trans
mission dip for the case ofN520 in ~a!.
e
In

-

-
n

e
e
e

-

-

-

f

-

e
s-

0

CROW band observed in Fig. 9. The appearance of mult
peaks instead of a plateau of high transmission is likely d
to the imperfect coupling between the unperturbed wa
guide band and the flat CROW band.

In Sec. IV, we found that the optical transmission a
reflection depend critically on the cavity loss~gain!. For a
waveguide coupled to multiple resonators, we expect to
similar critical dependence. In Fig. 14, we calculate the o
tical transmission and reflection coefficients of a wavegu
coupled to six resonators, withk0R5p/2 and RGc/vg
50.05. In the presence of cavity loss, we find that the ra
oscillation of the transmission coefficient vanishes arou
the edge of the transmission dip. This is due to the redu
interference between the lossy resonators. When cavity
is introduced, we find that the transmission and reflection
greatly enhanced at frequencies corresponding to the b
edge of the indirect CROW band as shown in Fig. 7. T
gain enhancement is a direct consequence of the slow g

e

d

FIG. 13. The transmission spectrum of a straight waveguide
coupled toN resonators, withN52 andN510, respectively. We
consider the case ofG0/Gc50 andk0R53.0. As in the previous
calculations,RGc/vg50.05.

FIG. 14. The transmission and reflection spectra of a wavegu
coupled toN resonators with loss (G0/Gc.0) or gain (G0/Gc,0).
We useN56,k0R5p/2, andRGc/vg50.05 in the calculations.
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velocity at the edge of the indirect CROW band. In Fig. 1
whereN520 andk0R50, we also find a diminished trans
mission side lobe in the presence of cavity loss, and sh
enhancement of optical transmission at the band edge w
the cavities possess gain. However, comparing Fig. 15
Fig. 14, we observe that it takes more cavities to obtain
same amount of optical enhancement whenk0R50. Finally,
we study the case ofN56 andk0R53.0, which is shown in
Fig. 16. With the presence of cavity lossG0/Gc50.3, we find
that the transmission peaks aroundDv50 in the case of
lossless cavities are greatly reduced. With cavity g
G0/Gc520.12, we find a sharp peak of enhanced opti
transmission close toDv50. Indeed, comparing Fig. 16 t
Fig. 14, we find that the enhancement of the optical tra
mission for k0R53.0 is much larger than the case ofk0R
5p/2. As a concluding remark, we observe that the pheno
enon of effective gain enhancement is a direct conseque
of the reduced group velocity around the band edge@38#.

FIG. 15. The transmission spectrum of a waveguide couple
20 resonators with loss or gain.k0R50 andRGc/vg50.05 are used
in the calculations.

FIG. 16. The transmission spectrum of a waveguide couple
six resonators.k0R53.0 andRGc/vg50.05 are used in the calcu
lations.
,

rp
en
to
e

n
l

-

-
ce

VII. SUMMARY

We generalize the scattering-theory formalism to disc
the coupling between waveguides and highQ optical resona-
tors possessing loss or gain. We calculate the optical tra
mission and reflection coefficients for two basic coupli
geometries, the side coupling geometry and the resonant
pling geometry. It is found that the optical transmission a
reflection characteristics depend critically on the the c
pling between the waveguide and the resonator, the de
eracy of the cavity modes, and the cavity loss or gain.
propose the concept of an indirect CROW formed by co
pling an infinite array of highQ optical resonators to a
straight waveguide. The dispersion relation of the indir
CROW bands is calculated using a matrix formalism ba
on scattering-theory results. Finally, we derive an analyti
formula that gives the optical transmission and reflection
efficients for a waveguide coupled toN identical optical
resonators. Using this result, we discuss the dependenc
the optical transmission and reflection characteristics on v
ous cavity and waveguide parameters.
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APPENDIX A

To derive Eq.~2.6!, we first use Eq.~2.5! and express the
term Tuki& as the sum of an infinite series,

Tuki&5F(
l 50

` S 1

vki
2H01 i e

VD l G uki&. ~A1!

We define the renormalized Green functionG as

Gm,n~v!5^muGun&

5K mU(
l 50

`
1

v2H01 i e S V
1

v2H01 i e D lUnL .

~A2!

Multiplying Eq. ~A1! from the left by ukj& and using the
above definition forG, we find

Tkj ,ki
5^kj uTuki&5dkj ,ki

1
1

vki
2vkj

1 i e (
m,n

Vkj ,mGm,n~vki
!Vn,ki

,

~A3!

which is exactly Eq.~2.6a!. Equation ~2.6b! can also be
proved in a similar way.

We notice that for any matrixA with all its eigenvalues
less than 1, we have the identity

1

I2A
5(

l 50

`

A l , ~A4!

to

to
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the
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whereI is a unit matrix. Applying this relation to Eq.~A2!,
we find

G5
1

v2H01 i e (
l 50

` S V
1

v2H01 i e D l

5
1

v2H01 i e

1

I2V/~v2H01 i e!

5
1

v2H1 i e
, ~A5!

where we have used the relationH5H01V.

APPENDIX B

In order to derive Eq.~2.7!, we start by rewriting Eq.~A2!
as

Gn2 ,n1
5^n2uGun1&5

1

v2Vn1
1 i e (

l 50

`

an2 ,n1

l , ~B1a!

an2 ,n1

l 5^n2uA l un1&5 K n2US 1

v2H01 i e
VD lUn1L ,

~B1b!

where the indicesn2 andn1 refer to the optical modes within
the highQ resonator, andVn1

is the frequency of modeun1&
as given by the unperturbed HamiltonianH0.

We can expressan2 ,n1

l in terms of lower order terms,

an2 ,n1

l 5(
n3

K n2U 1

v2H01 i e
VUn3L

3K n3U 1

v2H01 i e
V l 21Un1L

1(
k,n3

K n2U 1

v2H01 i e
VUkL K kU 1

v2H01 i e
VUn3L

3K n3U 1
V l 22Un1L
v2H 1 i e

nd

v.

iv,

n

5
1

v2Vn2
1 i e S (

n3

Vn2 ,n3
an3 ,n1

l 21

1(
k,n3

Vn2 ,k

1

v2vk1 i e
Vk,n3

an3 ,n1

l 22 D . ~B2!

To cast this relation in a simpler form, we define the follow
ing matrix operator within the subspace expanded by
high Q modesun&:

^n2uG0un1&5
dn2 ,n1

v2Vn1
1 i e

, ~B3a!

^n2uVdun1&5Vn2 ,n1
, ~B3b!

^n2uV i un1&5(
k

Vn2,k

1

v2vk1 i e
Vk,n1

, ~B3c!

where the termsVd andV i represent the direct and indirec
interaction, respectively, between the cavity modes.

The matrix form of Eq.~B1! is

G5S (
l 50

`

A l DG0 . ~B4!

With the initial conditions forA l given by

A05I , A15G0Vd , ~B5!

we find

G5G01G0~Vd1V i !G, ~B6!

where we have used the relation Eq.~B2!.
Consequently, we have

G215G0
212~Vd1V i !. ~B7!

Using Eq.~B3!, we find that the above equation is exact
Eq. ~2.7!.
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